Investigación proyecto Grupo "SUMMA"

Línea: Educación Matemática Departamento de Ciencias Básicas UNIVERSIDAD DE MEDELLÍN

Ponente: JOSÉ ALBERTO RÚA VÁSQUEZ JORGE ALBERTO BEDOYA

1er Intercambio de experiencias significativas sobre la atención y prevención de la deserción

UNIVERSIDAD DE LOS LLANOS

MODELOS DE SITUACIONES PROBLEMA PARA LA MOVILIZACIÓN DE COMPETENCIAS MATEMÁTICAS EN LA FORMACIÓN BÁSICA EN LA UNIVERSIDAD DE MEDELLÍN

Objetivo General

Determinar las competencias que se desarrollan en los estudiantes del primer semestre con base en la aplicación de un modelo de situaciones problema, en el curso de Algebra - Trigonometría, adscritos al Departamento de Ciencias Básicas de la Universidad de Medellín.

Problema

Un estado de desequilibrio

Toda situación que un sujeto no puede resolver mediante la utilización de su repertorio de respuestas inmediatamente disponibles

(Fraisse, P y Piaget: La inteligencia; Buenos Aires)

PROBLEMA

Polya: "Resolver un problema es abordar la situación con cierto **número** de esquemas que se intentan aplicar, pero que muestran no ser eficaces y desean ser modificados o reemplazados por otro que el sujeto inventa. Existe un problema cuando el sujeto se encuentra verdaderamente desarmado ante los estímulos"

(Polya, G: Cómo resolverlo; Madrid)

Situación Problema

Una situación problema es un espacio de interrogantes frente a los cuales el sujeto está convocado a responder. En el campo de las matemáticas, una situación problema se interpreta como un espacio pedagógico que posibilita tanto la conceptualización como la simbolización y la aplicación comprensiva de algoritmos, para plantear y resolver problemas de tipo matemático

(Mesa, O: Contextos para el desarrollo de situaciones problema en la enseñanza de las matemáticas)

Modelo de Situaciones Problema

- 1. Definición de una red conceptual. Esta red tiene que ver con tener a disposición un referente de algún saber.
- 2. Escoger un motivo. Es una situación del contexto que sea capaz de facilitar actividades y el planteamiento de preguntas abiertas y cerradas. El motivo puede ser un fenómeno real o imaginado
- 3. Fijar varios estados de complejidad. El concepto de complejidad conceptual relativo para cada problema y para cada contexto cultural e individual que se este considerando.

- 4. Proponer una estrategia. Aquí es importante la didáctica y los momentos de enseñanza y aprendizaje para que afloren las propuestas creativas.
- 5. *Ejercitación*. Escoger ejercicios adecuados, es decir, prototipos que deben comprender los estudiantes.
- 6. Ampliación, cualificación y desarrollo de los conceptos tratados. Una situación problema que se diga interesante tiene que ofrecer esta opción a los estudiantes.
- 7. Implementar una estrategia de evaluación de las competencias. Esta es tal vez la actividad más difícil de implementar; la evaluación de competencias a través de logros de las mismas, requiere la implementación de una forma de evaluar muy seria y cuidadosa.

Competencias

- Una característica subyacente de un individuo, que está causualmente relacionado con un rendimiento efectivo o superior en una situación o trabajo, definido en términos de un criterio" Spencer y Spencer (1993)
- Conjunto de conocimientos, habilidades, disposiciones y conductas que posee una persona, permitiéndole la realización exitosa de una actividad laboral o de otra índole" Rodríguez y Feliú (1996)

Competencias

- Comunicativa
- Interpretativa
- Argumentativa
- Pragmática
- Contrastativa o verificativa
- Creativa

Comunicativa o argumentativa

Es capaz de recurrir a diferentes lenguajes de representación en la interpretación y solución de problemas, conservando en ellos la estructura lógica y matemática del problema.

Indicadores de logro

- 1) Justifica o explica las razones por las cuales reconoce, usa o crea relaciones y operaciones.
- 2) Dice por qué usa una determinada estrategia para resolver algún problema

Pragmática

- El alumno interpreta problemas, y al descubrir su estructura, la formaliza en un algoritmo, el cual sintetiza toda la lógica del problema. Específicamente, da cuenta de las siguientes capacidades:
- □ Para resolver y plantear problemas con uso de la aritmética
- □ Para resolver y plantear problemas con uso del álgebra,

Interpretativa

- 1. <u>Competencia Interpretativa de Enunciados Matemáticos</u> Indicadores de logro
- ☐ Crean nuevas relaciones a partir de relaciones conocidas.
- ☐ Traducen enunciados del lenguaje natural al lenguaje matemático.
- ☐ Traducen enunciados del lenguaje matemático al lenguaje natural.
- ☐ Simbolizan enunciados sobre operaciones y relaciones en el pensamiento numérico.
- ☐ Simbolizan enunciados sobre operaciones y relaciones en el pensamiento Algebraico

<u>Competencia interpretativa de modelos</u> <u>matemáticos</u>

Indicadores de logro

- Identifica las relaciones y operaciones a partir de una representación verbal de las situaciones.
- Recurre a dibujos, representaciones icónicas, para representar relaciones y operaciones.
- Acepta representaciones no icónicas de las relaciones.
- Crea representaciones no icónicas para relaciones y operaciones.
- Reconoce representaciones matemáticas para las relaciones y operaciones.
- Dado un modelo matemático, de una relación o de una operación, puede aplicarlo a casos particulares.
- Amplía la significación dada a un modelo de manera que incluya una nueva situación.
- Reconoce sistemas matemáticos en fenómenos tecnológicos.
- Identifica las propiedades estructurales de un sistema matemático

Creativa

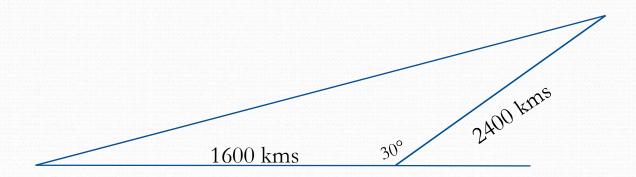
Donde el alumno pone a prueba sus conocimientos para interpretar o modelar nuevas situaciones, que encuadren en el modelo en cuestión.

<u>Indicadores de logro</u>

- Encuentra el procedimiento, la relación o la operación para resolver un problema planteado.
- Crea un nuevo procedimiento, nuevo para él, en la solución de un problema.
- Diseña modelos para plantear nuevos problemas.
- Aplica, creativamente, un algoritmo para resolver un nuevo problema.
- Diseña modelos matemáticos en la solución de problemas, usando algoritmos conocidos.
- Tiene la capacidad para diseñar modelos matemáticos en la solución de problemas, creando nuevos algoritmos.

Contrastativa o verificativa

Gracias a esta competencia el alumno está en condiciones de determinar el alcance teórico o práctico de lo aprendido. Lo primero conserva la coherencia con el discurso; lo segundo, su funcionalidad o contrastación.


- Aplica un algoritmo, y además puede revisarlo y confrontarlo con los elementos operados y relacionados.
- Dada una fórmula o un modelo es capaz de examinar su validez para casos particulares.

Ejemplo

Un piloto vuela en una trayectoria durante 2 horas; después efectúa una corrección del curso, dirigiéndose 30° a la derecha de su curso original y vuela 3 horas. Si mantiene una velocidad constante de 800 kms/hora, ¿ qué tan alejado está de su posición inicial?

Competencias: interpretativa, pragmática y contrastativa

SOLUCIÓN

Formato de evaluación: Competencias ha evaluar e indicadores de logro

Solución

$$a^{2} = b^{2} + c^{2} - 2bc \cos \propto$$

$$a^{2} = 1600^{2} + 2400^{2} - 2(1600)(2400) \cos 30$$

$$a^{2} = 2'560.000 + 5'760.000 - 7'680.000 \cos 30$$

$$a^{2} = 2'560.000 + 5'760.000 - 6'651.075$$

$$a^{2} = 1'668.925$$

$$a = 1.291.8$$

Conclusiones o logros

- Deserción
- Cualificación en el lenguaje
- Formato de evaluación: objetividad en la evaluación y facilidad.
- No estamos evaluando ignorancia con conocimiento.

Bibliografía

- AUSUBEL, D. et al Psicología educativa. México: Trillas, 1991. P. 70-71.
- BEDOYA, BELTRÁN JORGE ET AL: Modelo de situaciones problema para la movilización de competencias matemáticas en las Ciencia Básicas de la Universidad de Medellín, Proyecto de Investigación, Universidad de Medellín. Colombia: 2007.
- ☐ GARCÍA, BARREIRO ALVARO: ¿Qué es Ciencia Cognitiva?, Iternet, 1997.
- GODINO, J. D. (1996). Significado y comprensión de los conceptos matemáticos. En, L. Puig y A. Gutiérrez (Eds.), Proceedings of the 20th PME Conference (Vol 2, pp. 417-424). Valencia
- ONTORIA PEÑA, Antonio et al. Mapas conceptuales. Una técnica para aprender.
 Madrid: Narcea, 1999. P. 22.
- PIAGET, J Y E. W. BETH. Epistemología Matemática y psicologicía. Barcelona: Grijalbo, 1980. p. 103 Traducción castellana de Victor Sánchez Zabala.
- □ PEDRO D. LAFOURCADE: Evaluación de los aprendizajes, Internet,1999.

Contacto: jabedoya@udem.edu.co